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1. 

The elastic stability of structures has been a major focus area of mechanics for many years.
There are several standard texts on buckling including, among others, those of
Timoshenko [1], Bolotin [2], and Brush and Almroth [3]. These texts include classical
results for determining the buckling loads of a variety of structures with simple geometries.
General purpose finite element codes such as MSC/NASTRAN [4] and ABAQUS [5]
provide one with computational methods to solve certain buckling problems not amenable
to closed-form solution.

Recently, the method of quadratic components [6] was developed to simulate the motion
of rotating flexible structures. As the name implies, the method expresses the deformation
of a structure as a quadratic function of a set of generalized co-ordinates. As an
illustration, consider an inextensible cantilevered beam subjected to a transverse load at
its tip. The linear part of the response consists of the transverse deformations while the
quadratic part consists of the axial deformations. The second order axial deformations are
required in order to satisfy the inextensibility constraint.

It turns out that second order terms in the quadratic component formulation appear
as first order terms in the equations of motion if the structure undergoes significant rigid
body motions. One can easily verify this fact for the cantilevered beam when its base
rotates about an axis perpendicular to the transverse and axial directions. By including
the second order axial deformations in the kinematics, one is able to predict correctly the
spin stiffening effect. In a similar manner, the method of quadratic components can be used
to model the effects of applied loads on the stiffness of a structure. In fact, the geometric
stiffness matrix appears naturally through the use of quadratic components. Thus, the
method provides the means to calculate buckling loads.

In the following section, the method of quadratic components is introduced and used
as the basis for a buckling calculation procedure. In the third section, this procedure is
applied to a cantilevered beam subjected to compressive loads of both the fixed-direction
and follower types. For fixed-direction loads, the stiffness matrix of the beam is a linear
function of the load and is symmetric. Thus, the buckling load can be determined by
solving a symmetric eigenvalue problem. For the case of the follower-type load, it is shown
that the stiffness matrix is a linear function of the load, but the matrix is non-symmetric.
In this case, the stability of the beam depends on the mass distribution as well as the
stiffness of the beam. Buckling calculations obtained using the new procedure are
compared with classical results.

2.    

In this section, a procedure is developed for buckling calculations based on the method
of quadratic components. Under conditions of static equilibrium, the displacement field
U of a structure subjected to an applied force field F can be expressed as
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U=N(F), (1)

where N is a non-linear operator mapping F to U. With the method of quadratic
components, the force field is expressed as a superposition of basis force fields:

F= siFi, (2)

where each field Fi is time-independent and summation is performed over repeated indices.
The index i is assumed to have values from 1 to n. Appropriate bases of force fields can
be selected to reflect either static or modal-like responses. As shown in the example
problem, the basis force fields are not necessarily associated with the actual loading in the
problem. The basis forces simply serve as generators for the non-linear space of
displacement configurations.

Expanding the non-linear operator N as a Taylor series through quadratic terms and
neglecting the higher order terms yields

U({si})= si Ui + si sj Gij, (3)

where Ui and Gij represent the linear and quadratic parts of the displacement field.
Evaluating the displacement field given by equation (3) at the material point x and allowing
the generalized co-ordinates si to vary with time yields

u(x, t)= si (t)ui(x)+ si (t)sj (t)gij(x). (4)

One can show that the symmetry gij(x)= gji(x) holds. For purposes of buckling
calculations, the strain energy V and kinetic energy T of the system can be expressed in
matrix notation as quadratic functions of the generalized co-ordinates:

V= 1
2s

TKs, T= 1
2ṡ

TMṡ, (5, 6)

where the overdot in equation (6) denotes the time derivative and

s=[s1 (t) . . . sn (t)]T. (7)

The elements in row i and column j of the matrices K and M are given by

kij =g f i(x) · uj(x) dV, mij =g r(x)ui(x) · uj(x) dV, (8, 9)

where r is mass density and f i(x) is the basis force field Fi evaluated at x. The integrals
in equations (8) and (9) are evaluated over the volume of the structure.

The load used for buckling calculations is assumed to be of the form

r(x, u, p)= pr̂(x, u), (10)

where p is a parameter used to scale the magnitude of the load applied to the structure.
The dependence of r on the deformation field allows for the consideration of follower-type
loads. Since u(x) is a function of the generalized co-ordinates, the right side of equation
(10) can be expressed as a Taylor series in s as

r(x, s, p)= p[r̂0 (x)+ ai(x)si ]+O(s2), (11)

where O(s2) denotes quadratic and higher order terms of the generalized co-ordinates.
The virtual work of the load is given by

dW=g r(x, s, p) · du(x, t) dV, (12)
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where d is the variational symbol. Substituting equations (4) and (11) into equation (12)
and neglecting quadratic and higher order terms yields

dW= dsT(b+ pHs), (13)

where the elements of the vector b and matrix H are given by

bi = p g r̂0 (x) · ui(x) dV, hij =g [2r̂0 (x) · gij(x)+ ui(x) · aj(x)] dV. (14, 15)

In the present study, damping mechanisms within the structure are neglected. Thus,
Hamilton’s principle is written as

g
t2

t1

(dT− dV+ dW) dt=0. (16)

Substituting equations (5), (6) and (13) into equation (16), integrating by parts, and
setting the coefficient of ds equal to zero yields the equation of motion

Ms̈+(K− pH)s= b. (17)

Neglecting the right side of equation (17) and assuming a solution of the form

s=ectf (18)

yields the generalized eigenvalue problem

[(K− pH)− mM]f=0, (19)

where m=−c2.
The system is stable provided that all the eigenvalues m are real and greater than zero.

Otherwise, there would exist a value of c with a positive real part. Thus, one can determine
the stability of the system for any value of the load parameter p by examining the
eigenvalues of equation (19).

For cases in which the matrix K− pH is symmetric, the value of p associated with
buckling can be determined by solving the generalized eigenvalue problem

(K− pH)f=0, (20)

where p is now considered as an eigenvalue. The lowest eigenvalue of equation (20) is the
critical value of p for buckling. Symmetry of the matrix K− pH is associated with
conservative loads while non-symmetry of this matrix connotes a non-conservative
loading.

The buckling calculation procedure is summarized as follows:

(1) Select a set of basis forces f i(x).
(2) Obtain expressions for the terms ui(x) and gij(x) (see equation (4)).
(3) Obtain expressions for the matrices K, M and H (see equations (8), (9) and (15)).
(4) If the matrix K− pH is symmetric, the critical value of the load parameter is the

smallest eigenvalue of equation (20).
(5) If the matrix K− pH is non-symmetric, the critical value of the load parameter is

the smallest value of p for which at least one of the eigenvalues of equation (19)
is not positive and real.

An appealing feature of this procedure is that it can be applied to a wide variety of
structures by making use of existing finite element codes to aid in Steps (1)–(3). Guidelines
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on the use of such codes for this purpose are available [7]. While the same code used to
aid in Steps (1)–(3) would likely have a buckling calculation capability, this capability may
be limited to problems for which the H matrix is symmetric.

3. 

As an example application of the buckling calculation procedure, consider the
cantilevered beam shown in Figure 1. The beam is inextensible and has uniform mass and
stiffness distribution along its length. Deformations are restricted to the (n1 − n2) plane and
the load is applied at the beam tip. The beam length, bending stiffness and mass per unit
length are denoted by L, EI and m̂, respectively.

Two load cases are considered. For Case 1, the direction of the load remains in the
negative n1 direction. For Case 2, the load follows the rotation of the beam and remains
parallel to the neutral axis at the tip. The latter case is an example of a follower load and
is non-conservative.

Step (1): The basis forces are chosen as those associated with the eigenmodes of the
beam. That is, the distributed forces which statically deform the beam into the shapes of
the eigenmodes.

Step (2): The terms ui(x) are the linear eigenmodes of the system and given by Blevins
[8]:

ui(x)= {cosh (li x/L)− cos (li x/L)− si [sinh (li x/L)− sin (li x/L)]}n2, (21)

where the coefficients li and si for i=1, . . . , 5 are given in Table 1. The terms gij(x) are
determined by the constraint that the beam is inextensible. Thus,

gij(x)=6−1
2 g

x

0

dui(t)
dt

duj(t)
dt

dt7n1 =Lgij(x)n1. (22)

Substituting equation (21) into equation (22), setting x equal to L, and using integration
tables (Blevins [8]), one obtains

gii(L)=−1
2 [si li (2+ si li )] (23)

Figure 1. Load cases for cantilevered beam examples.
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T 1

Beam coefficients used in equation (21).

i li si

1 1·87510407 0·734095514
2 4·69409113 1·018467319
3 7·85475744 0·999224497
4 10·99554073 1·000033553
5 14·13716839 0·999998550

and for i$ j,

gij (L)=−2li lj /(l4
i − l4

j ) [(−1)i+ j(sj l
3
i − si l

3
j )− li lj (si li − sj lj )]. (24)

Step (3): The elements of the stiffness and mass matrices are given by

kij =EI g
I

0 $d
2ui

dx2

d2uj

dx2% dx, mij = m̂ g
L

0

[ui · uj] dx. (25, 26)

Performing the integrations in equations (25) and (26), one obtains

k=(EI/L) diag (l4
1 , . . . , l4

n ), M= m̂L3In , (27, 28)

where diag denotes a diagonal matrix and In is the identity matrix of dimension n.
Since the beam is one-dimensional, equation (15) simplifies to

hij =g
L

0

[2r̂0 (x) · gij(x)+ ui(x) · aj(x)] dx. (29)

For both loading cases, the term r̂0 is given by

r̂0 (x)=−d(x−L)n1, (30)

where d is the Dirac delta function. The term ai(x) is equal to zero for Case 1. For Case
2,

aj(L)=−2sj lj (−1)j+1d(x−L)n2. (31)

The leading coefficient of d(x−L)n2 on the right side of equation (31) is the slope of
the jth eigenmode at the beam tip. Substituting equations (21), (22), (30) and (31) into
equation (29) yields

hij =−2L[gij(L)+2sj lj (−1)i+ j]. (32)

Step (4): For Case 1 the matrix K− pH is symmetric, therefore, the critical value of the
load parameter p is the smallest eigenvalue of equation (20).

Step (5): For Case 2 the matrix K− pH is non-symmetric. Thus, the critical value of
the load parameter is the smallest value of p for which at least one of the eigenvalues of
equation (19) is not positive and real.

3.1. Results
The critical value of the load parameter p can be expressed in terms of the dimensionless

variable a as

p= aEI/L2. (33)
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T 2

Results for cases 1 and 2

a
ZXXXXXXXXCXXXXXXXXV

n Case 1 Case 2

1 2·6598 a
2 2·4817 20·105
3 2·4740 20·113
4 2·4697 20·052
5 2·4688 20·061

Table 2 shows the values of a for n=1, . . . , 5 for both load cases. Recall that n is the
number of generalized co-ordinates. The exact value of a for Case 1 is equal to
p2/41 2·4674 (reference [1]). The exact value of a for Case 2 is equal to approximately
20·05 [2]. Notice that in the table, a converges monotonically from above to a constant
value for Case 1. For Case 2, a appears to be converging to a constant value, but the
convergence is non-monotonic.

4. 

The method of quadratic components has been shown to be applicable to buckling
problems with both conservative and non-conservative loads. The method has been used
to develop a buckling calculation procedure which was applied to an example problem.
The results from the example problem were in excellent agreement with classical results.
The procedure developed can be applied to a wide variety of different structures by making
use of existing finite element software.
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